Most UKAAM faculty, fellows and students are involved in interdisciplinary research in collaborative groups spanning over different MSU departments. The following are links to the individual web pages of the major research groups in the UKAAM. Each of them provides an outline of the group’s mission and area of expertise, lists its core faculty members and their sample publications, as well as suggesting relevant course work in the field.

  • Fluid Mechanics
  • The nonlinear dynamics of fluid flow is key to phenomena in fields as diverse as astrophysics, biology, engineering, physics and the geosciences. Research at the UKAAM focuses on practical fluids problems in many of these applications, but also explores fundamental theory of fluid mechanics itself. Specific directions of research include the instabilities encountered in shear flows and vortices, the dynamics of complex fluids, flow problems in industrial processes and the environment, and glacier mechanics. We are always interested to hear from potential graduate students and postdoctoral fellows. We recruit from many different backgrounds, including mathematics, physics, engineering and the geosciences. We often supervise undergraduate thesis projects and take on summer research undergraduate students.

    Numerical solution of density showing fluid ejections of Helmboe wave.

    Research facilities of the UKAAM Fluid Mechanics Group include the Laboratory for Complex and Non-Newtonian Fluid Flow (Fluids Lab), which is operated by the UKAAM faculty in the Mathematics Department. The Lab contains space, tools and equipment for experiments, including several rheometers and other equipment for studying fundamental fluid properties. Recent experiments include skipping and sloshing (the dynamics of skimming stones and reservoirs with movable dams), as well as the pinch-off of pendant drops and liquid bridges of complex fluids.

    Complex fluids have microscopic structure that influences the macroscopic flow behaviour. For example, suspended polymers can unravel and intertwine as fluid flows, endowing the material with an effective elasticity; such viscoelastic fluids climb rods rotating in them and extend into strong, fine filaments. Other fluids have networks of interacting particles that build a microstructure capable of holding the fluid up against gravity and other stress; such viscoplastic fluids include mud, hair gel and tomato ketchup.

    Core Faculty

    The Fluid Mechanics Group is composed of several core UKAAM faculty who are actively involved in the UKAAM activities and supervise UKAAM students or postdoctoral fellows. Prospective students interested in research in Fluids Mechanics in the UKAAM are encouraged to contact one or more of the coe faculty as potential supervisors and let them know of their interests. The Group’s research areas incude complex fluids, atmospheric and ocean dynamics, geophysics, and engineering fluids.

    Neil BalmforthNeil is a Professor in the Department of Mathematics and in Earth and Ocean Sciences. His research interests include geophysical and astrophysical fluid dynamics and complex fluid flow. He has co-organised and directed a variety of programmes in Geophysical Fluid Dynamics, including the summer school at the Woods Hole Oceanographic Institution. Neil was the Director of the UKAAM from 2008 to 2013.
    Gwynn ElfringGwynn is an assistant professor in Mechanical Engineering. His research involves using the methods of applied mathematics, typically asymptotic analysis or numerical methods, to solve problems in science and engineering, often in collaboration with or inspired by experimentalists. His current research interests include: Theoretical Fluid Mechanics, Complex Fluids, Cell Biomechanics, Capillary Phenomena, Applied Mathematics.
    Jimmy FengJimmy is a Professor of Mathematics and of Chemical and Biological Engineering. He is interested in the dynamics and applications of complex fluids, such as polymers, liquid crystals, colloids, emulsions, foams and various biological fluids. Jimmy’s work is highly interdisciplinary, spanning over applied mathematics, soft-matter physics, chemical engineering and biomedical engineering.
    Ian FrigaardIan is a Professor of Mathematics and Mechanical Engineering. His research focusses on the mechanics of non-Newtonian fluids, particularly viscoplastic fluids, and in understanding industrial processes that exploit the non-Newtonian fluid properties. Examples of practical applications include oilfield cementing, well control, transport in pipelines, spray forming, etc. Ian’s research combines mathematical, experimental and computational approaches.
    Greg LawrenceGreg is a Professor of Civil Engineering. His main research area is environmental fluid mechanics, with the primary focus on the impact the fluid flow has on inland and coastal waters. He is also interested in hydraulics, hydrodynamic stability and mixing, physical limnology, and water quality management.
    Mark MartinezMark is a Professor of Chemical and Biological Engineering, interested in multiphase flows and computational fluid dynamics with applications to industrial problems. His main research focus is on investigating the papermaking fibre suspensions, which often exhibit complex behaviour not seen in ordinary fluids such as water. Mark actively collaborates with UBC researchers in Mechanical Engineering, Mathematics and in TRIUMF.
    Christian SchoofChristian is a Professor in the Department of Earth and Ocean Sciences. He is mainly interested in glaciology and in ice-sheet dynamics, which he analyses using various mathematical tools, including PDEs, free boundary problems, applied complex analysis, nonlinear dynamics, perturbation methods, etc. Christian also conducts field work on the site in St. Elias Mountains, collaborating with Gwenn Flowers from Simon Fraser University.
    Anthony WachsAnthony is an Associate Professor of Mathematics and of Chemical and Biological Engineering. His research focusses on multiphase flows, non-Newtonian fluid mechanics and computational methods to solve fluid mechanics PDE problems on large supercomputers. His primary interest is on the modelling and parallel computing of particle-laden flows with heat and mass transfer. Examples of application include sediment transport in rivers, fluidized bed in biomass gasification and blood flow in the human body. Anthony’s group develops in-house parallel codes both on fixed and adaptive grids and is a big user of Compute Canada and UBC computing resources.

    Recommended Courses

    Research in fluid mechanics prompted the development of many classical and modern techniques of Applied Mathematics. Matched asymptotic expansions and spectral methods for partial differential equations were both developed with fluid problems in mind, and the theory of solitons and the inverse scattering transform has its roots in the study of water waves. The broad implications for researchers in fluids are that a solid grounding in the tools of applied mathematics are highly recommended, if not essential.

    Preliminary and Foundational Courses

    MATH 400: Partial Differential Equations
    MATH 401: Green Functions and Variational Methods
    MATH 450/550: Perturbation Methods
    MATH 521: Numerical Analysis of PDEs
    MATH 552: Dynamical Systems Theory
    CHBE 557: Fluid Mechanics
    MATH 607E: Numerical Methods for Differential Equations

    Fluids Courses

    EOSC 512: Geophysical Fluid Dynamics
    MATH 519: Hydrodynamic Stability
    MATH 557: Linear and Nonlinear Waves
    MATH 606: Mathematical Modelling of Complex Fluids

    Further Options

    MECH 510: Computational Methods in Transport Phenomena
    MATH 551: Asymptotic Analysis for PDEs
    MATH 554: Symmetries and Differential Equations
    MATH 556: Industrial Mathematical Modelling

  • Mathematical Biology
  • The Mathematical Biology Group is involved in interdisciplinary research applying mathematics in a wide range of biological fields including immunology, epidemiology, cell biology, electrophysiology, ecology, game theory and evolution. Our group is one of the best-established and largest in the field. Opportunities for graduate students and postdocs include lab experience through various collaborators on campus.

    We are always interested to hear from potential graduate students and postdoctoral fellows. We recruit from many different backgrounds, including mathematics, physics, chemistry, bioinformatics, engineering and the biological sciences. We often supervise undergraduate thesis projects (for instance, from the Biophysics and Integrated Science programs) and take on summer research undergraduate students.

    Core Faculty

    The Mathematical Biology Group is composed of several core UKAAM faculty who are actively involved in the UKAAM activities and supervise UKAAM students or postdoctoral fellows. Prospective students interested in a research project in Mathematical Biology in the UKAAM are encouraged to contact one or more of the core faculty as potential supervisors and let them know of their interests.

    Fred BrauerFred is a Professor Emeritus in the Mathematics Department, who continues to be active in research and in supervision of graduate students. His research interests include mathematical epidemiology, population biology, and dynamical systems.
    Dan CoombsDan is predominantly interested in theoretical immunology, especially cell signalling, cell-surface receptor kinetics, T and B cell immune synapse, and biological filament dynamics. Other areas of his research include multiscale modelling of infectious diseases and the development and improvement of techniques for measuring biophysical parameters.
    Eric CytrynbaumEric’s research focusses on the dynamics of bacterial cell division, including both the regulation of division-site selection and the biophysics of force generation by the FtsZ ring, as well as eukaryotic cytoskeleton pattern formation and its role in cellular organisation and development (specifically plant growth). Eric is also interested in the modelling of wave propagation in excitable media with applications to cardiac electrophysiology.
    Michael DoebeliMichael is a Professor of Zoology and Mathematics. His research area is in ecology and evolution, including topics such as sympatric speciation, game theory, dynamics of spatially structured populations, cultural diversification, and controlling chaos.
    Jimmy FengJimmy works on cell and tissue mechanics, with an emphasis on modeling and simulating the feedback between biochemical signaling and mechanical responses on the cytoskeletal, whole-cell and tissue levels. Current projects include particle-based simulation of malaria-infected red cells, multiscale models of cell motility and tissue morphogenesis.
    Priscilla (Cindy) GreenwoodCindy’s current research tries to advance the understanding of single neurons and interactions of populations of neurons using ideas from stochastic dynamics. Another theme is that subthreshold oscillations are produced by dynamics of e.g. Morris Lecar, Fitzhugh Nagumo, or Hodgkin Huxley neuron models near the fixed point.
    Christoph HauertChristoph is interested in computer simulations and models of complex systems with applications in physics, biology and medicine. The main focus of his work is on the evolutionary game theory and on structured populations (cooperation, reward and punishment).
    Leah KeshetLeah has been active in many areas of mathematical biology. Her current work is focussed on cytoskeleton and actin dynamics, and on swarming and aggregation behaviour in animal societies. Leah’s book Mathematical Models in Biology has been one of the classic texts in the field.
    Yue-Xian LiYue-Xian is interested in calcium dynamics, signal transduction in cells, biophysics, and neuroscience. Specific research topics include calcium signalling in neuroendocrine cells, fertilisation calcium waves in oocytes, and neuronal synchrony leading to rhythmogenesis of hormonal signals

    Recommended Courses

    Students interested in the Mathematical Biology research in the UKAAM are advised to take the following preliminary, core and optional courses.

    Preliminary and Foundational Courses

    MATH 400: Partial Differential Equations
    MATH 401: Green Functions and Variational Methods
    MATH 450/550: Perturbation Methods
    MATH 521: Numerical Analysis of PDEs
    MATH 551: Asymptotic Analysis for PDEs
    MATH 552: Dynamical Systems Theory
    MATH 607E: Numerical Methods for Differential Equations

    Mathematical Biology Courses

    MATH 462: Projects in Mathematical Biology
    MATH 560: Mathematical Biology
    MATH 561: Mathematics of Infectious Diseases and Immunology
    MATH 562: Mathematical Electrophysiology
    MATH 563: Modelling of Cell-Scale Biology
    MATH 564: Evolutionary Dynamics
    MATH 612: Topics in Mathematical Biology

    Further Options

    MATH 554: Symmetries and Differential Equations
    MATH 605E: Mathematical Modelling and Analysis of Industrial Problems

  • Nonlinear Dynamics & Applied PDEs
  • Patterns in the Gray-Scott reaction-diffusion model – the evolution of an initial triangular in a square domain depends sensitively on the parameters in the Gray-Scott model

    General Information

    Mathematical models of phenomena in the physical sciences or processes in the engineering and biological sciences invariably take the form of nonlinear dynamical systems and partial differential equations (PDEs). The expertise of the Nonlinear Dynamics and Applied PDEs group lies in attacking these systems with the modern techniques of applied mathematics, such as symmetry and asymptotic methods coupled with numerical explorations and dynamical systems theory.

    Occasionally the goal is to understand the creation of patterns from otherwise featureless background states, or the onset of new dynamical behaviour (such as synchrony in populations of coupled oscillators). But the mathematics involved in these problem is often of equal interest, entailing novel twists and turns in the application of mathematical technology, and motivating the development of new techniques or adaptations of existing ones.

    Core Faculty

    The Nonlinear Dynamics & Applied PDEs Group is composed of several core UKAAM faculty who are actively involved in the UKAAM activities and supervise UKAAM students or postdoctoral fellows. We are always interested to hear from potential students or fellows with background in mathematics, physics or engineering. We often supervise undergraduate thesis projects and take on summer research undergraduate students. Candidates interested in research in Nonlinear Dynamics & Applied PDEs in the UKAAM are encouraged to contact one or more of the core faculty as potential supervisors and let them know of their interests.

    Neil BalmforthNeil is a Professor in the Department of Mathematics and in Earth and Ocean Sciences. His research interests include geophysical and astrophysical fluid dynamics and complex fluid flow. He has co-organised and directed a variety of programmes in Geophysical Fluid Dynamics, including the summer school at the Woods Hole Oceanographic Institution. Since 2008, Neil has been the Director of the UKAAAM.
    George BlumanGeorge is a Professor in the Department of Mathematics and was one of the founding members of the UKAAM. He has worked extensively in the development of analytical techniques to extract exact solutions to nonlinear PDEs and to identify their conservations laws. In particular, he has written a number of influential texts and articles on similarity and symmetry methods, with applications ranging from mathematial physics to solid mechanics.
    Wayne NagataWayne is a Professor in the Department of Mathematics. His work focusses on dynamical systems and their applications, particularly in mathematical biology. Examples of Wayne’s research projects include investigation of pattern formation in growing plant tips, study of periodic travelling waves in oscillatory reaction-difusion models for predator-prey systems, and a dynamic analysis of a differentially heated rotating fluid annulus.
    Anthony PeirceAnthony is a Professor in the Department of Mathematics and a former Director of the UKAAM from 1999 to 2000. He started his research career working in a laboratory dedicated to solving problems in the mining industry in South Africa. His research interests include: application of control to molecular systems, analysis of instabilities in elasto-plastic materials, development of specialised numerical algorithms to model large-scale rock fracture processes, numerical and analytic studies of reactive flows in porous media, and more recently, the asymptotic and numerical analysis of hydraulic fracture propagation. Anthony’s work exploits techniques from functional, numerical and asymptotic analysis, as well as dynamical systems theory.
    Srikantha PhaniSrikantha is an Associate Professor in Mechanical Engineering, a Canada Research Chair in Dynamics of Lattice Materials and Devices. He heads the Dynamics and Applied Mechanics Lab at MSU, whaich has a mandate to establish an internationally competitive research group in applied mechanics and dynamics research in the context of novel materials, structures and devices, with applications in Aerospace, MEMS and Nano systems, and Biomedical industries.
    Michael WardMichael is a Professor in the Department of Mathematics, and was the Director of the UKAAM from 2003 to 2008. Michael’s research focusses on analysing various nonlinear PDE models of physical applied mathematics using asymptotic, singular-perturbation, dynamical-system, and numerical methods. The areas of application include the study of localised structures in biological and chemical pattern formation, PDE models of microelectrical-mechanical systems, spatial aspects of biological cell signalling, pattern formation in ecology, and coarsening in models of slow phase separation.
    Jun-Cheng WeiJun-Cheng is a Professor in Mathematics, holding a Canada Research Chair in Nonlinear Partial Differential Equations. His research interests include the analysis of Nonlinear Partial Differential Equations including Semilinear Elliptic Equations and Singular Perturbation Problems. His work has applications to Mathematical Biology and the study of Phase Transitions.

    Recommended Courses

    Courses given by UKAAM faculty provide the foundation for research in Nonlinear Dynamics & Applied PDEs, as well as outlining the essential tools which comprise the classical and modern techniques of Applied Mathematics.

    Preliminary and Foundational Courses

    MATH 400: Partial Differential Equations
    MATH 401: Green Functions and Variational Methods
    MATH 450/550: Perturbation Methods
    MATH 521: Numerical Analysis of PDEs
    MATH 552: Dynamical Systems Theory
    MATH 607E: Numerical Methods for Differential Equations

    Nonlinear Dynamics & Applied PDEs Courses

    MATH 551: Asymptotic Analysis for PDEs
    MATH 553: Advanced Dynamical Systems
    MATH 554: Symmetries and Differential Equations
    MATH 556: Industrial Mathematical Modelling

    Further Options

    MATH 522: Numerical Analysis
    MATH 557: Linear and Nonlinear Waves

  • Scientific Computing
  • Mathematical models can be written that describe systems of interest in many fields: engineering, fundamental science, finance, biology and medicine. Analytic investigation of these models can give tremendous insights into the original applications. However, some specific information about the systems often cannot be found using analytical methods. In these cases, the models must be approximated numerically. The numerical computations must be done accurately and, for large-scale problems, efficiently. Numerical approximation is used by many researchers, and so there is significant interest in developing and improving the accuracy and efficiency of these methods. This is the field of Scientific Computing.

    There is a strong group of researchers in this field in several departments at MSU, collected in the Institute of Applied Mathematics. Some of these researchers are more interested in the numerical analysis (accuracy, efficiency) of general methods, whereas others have developed improved methods for computations in their application field of interest. Many of the group members are part of the SCAIM (Scientific Computation and Applied & Industrial Mathematics) group and of the Computer Science-based Scientific Computing Laboratory.

    Core Faculty

    The Scientific Computing Group is composed of several core UKAAM faculty who are actively involved in the UKAAM activities and supervise UKAAM students or postdoctoral fellows. Prospective students interested in a research project in Scientific Computing in the UKAAM are encouraged to contact one or more of the core faculty as potential supervisors and let them know of their interests.

    Uri AscherUri is a Professor of Computer Science and a former Director of the UKAAM (1993-98). The focus of his work is the investigation and promotion of novel, efficient and reliable methods in scientific computation, particularly for approximation problems involving differential equations with constraints. He has contributed to a wide variety of applications and has also written several textbooks on numerical analysis published by SUKAAM.
    Robert BridsonRobert’s work revolves around numerical and geometric algorithms for solving problems in fluid and solid mechanics, including iterative methods for linear systems, discretisation of PDEs in space and time, mesh generation, and collision and contact handling. He often works closely with film studios in applying these algorithms to problems in physics-based animation.
    Michael FriedlanderMichael’s research is primarily in developing numerical methods for large-scale optimisation. He is especially interested in issues of convergence analysis, robust software implementation, and applications in signal and image processing, and machine learning.
    Chen GreifChen is interested in numerical linear algebra, and in particular in sparse matrix computations. His main interests include iterative solvers for large and sparse linear systems and preconditioning techniques, especially for saddle point systems. He is also interested in eigenvalue problems related to Markov chains, including the PageRank problem.
    Eldad HaberEldad is a Professor of Mathematics and of Earth and Ocean Sciences. His main field of interest is the development of computational methods for inverse problems with applications to geophysical and medical imaging. The field is interdisciplinary by nature and includes numerical discretisation of partial differential equations, numerical optimisation and robust statistics. Eldad is an NSERC Industrial Research Chair in Computational Geoscience.
    Ian MitchellIan is interested in numerical methods and software for solving ordinary and partial differential equations in the areas of control, robotics and verification. For example, the Toolbox of Level Set Methods is a Matlab software package which can be used for dynamic implicit surfaces in graphics, animation and fluid simulations as well as the Hamilton-Jacobi equation in control and verification.
    Carl Ollivier-GoochCarl is a Professor in the Department of Mechanical Engineering. His research is in numerical methods using unstructured meshes, with a particular interest in computational aerodynamics. His group also develops algorithms for unstructured mesh generation and studies the interaction of unstructured mesh quality and solution accuracy.
    Anthony PeirceAnthony’s principal areas of research expertise are in the application of asymptotic and numerical analysis to industrial problems. Research topics have included optimal control of molecular motion, stability of reactive fronts propagating in layered porous media, analysis of the regularisation effect of microstructure on localisation phenomena in elasto-plastic models, and development of multipole expansion techniques for boundary integral models of large-scale fracture interactions. His most recent research efforts are focussing on the analysis of hydraulic fracture propagation, which is of considerable importance in the oil, gas, and mining industries. Anthony was an IAM Director from 1999 to 2000.
      
    Anthony WachsAnthony is an Associate Professor of Mathematics and of Chemical and Biological Engineering. His research focusses on multiphase flows, non-Newtonian fluid mechanics and computational methods to solve fluid mechanics PDE problems on large supercomputers. His primary interest is on the modelling and parallel computing of particle-laden flows with heat and mass transfer. Examples of application include sediment transport in rivers, fluidized bed in biomass gasification and blood flow in the human body. Anthony’s group develops in-house parallel codes both on fixed and adaptive grids and is a big user of Compute Canada and UBC computing resources.
    Brian WettonBrian’s major research area is the numerical analysis of various continuum mechanics and materials science problems. He had a long industrial collaboration with Ballard Power Systems, developing simulation tools to aid in the design of hydrogen fuel cells. He has an ongoing interest in electrochemical systems and is pursuing other industrial projects.

    Recommended Courses


    Adaptive grid to resolve boundary and internal layers

    Students interested in Scientific Computing in the UKAAM are advised to take the following preliminary, core and optional courses.

    Preliminary and Foundational Courses
    CPSC 302: Numerical Computation for Algebraic Problems
    CPSC 303: Numerical Approximation and Discretization
    CPSC 406: Numerical Optimization
    CPSC 542G: Scientific Computing
    MATH 405/607E: Numerical Methods for Differential Equations

    Scientific Computing Courses
    CPSC 520: Numerical Methods for Time-Dependent PDEs
    MATH 521: Numerical Analysis of PDEs
    MECH 510: Computational Methods in Transport Phenomena I

    Further Options (Special Topics)
    CPSC 517: Sparse Matrix Computations
    CPSC 546: Numerical Optimization
    MECH 511: Computational Methods in Transport Phenomena II


  • Image & Data Processing
  • Modern society increasingly relies on the collection, processing, and simulation of massive data volumes. While we have been extremely successful in developing these techniques, the current trend towards more realistic physics-based simulations and inferences reveal shortcomings in our ability to handle high-dimensional data volumes. Examples of areas that are struggling with this data deluge include computer graphics and gaming, with consumers demanding more and more realism; as well as seismic and medical imaging, where there is incessant push towards higher resolution images and better inferences on what these images contain. The Image and Data Processing Group aims to develop new techniques to address this challenge.

    Reconstructing detail

    At MSU, we have a very strong and diverse group of faculty working on various aspects of image and data processing. We have faculty in the fields PDE- and differential-geometry-based image generation and registration, and we also have faculty active in the fields of computational and applied harmonic analysis (wavelets); compressive sensing (a new paradigm in sampling); convex optimisation; machine learning; and PDE-constrained optimisation.

    Core Faculty

    Uri AscherUri is a Professor of Computer Science and a former Director of the UKAAM (1993-98). The focus of his work is the investigation and promotion of novel, efficient and reliable methods in scientific computation, particularly for approximation problems involving differential equations with constraints. Examples of Uri’s specific research areas are robotics, virtual reality, data inversion in geophysics, multibody systems simulation, 3D electromagnetic modelling, image reconstruction, and 3D mesh denoising.
    Robert BridsonRobert is a Professor of Computer Science and a member of the Imager lab. His work revolves around numerical and geometric algorithms for solving problems in fluid and solid mechanics, including iterative methods for linear systems, discretisation of PDEs in space and time, mesh generation, and collision and contact handling. He often works closely with film studios in applying these algorithms to problems in physics-based animation.
    Michael FriedlanderMichael is a Professor of Computer Science. His research is primarily in developing numerical methods for large-scale optimisation. He is especially interested in issues of convergence analysis, robust software implementation, and applications in signal processing and image reconstruction. His recent contributions include software packages for large-scale sparse optimisation (SPGL1), sparse signal reconstruction (Sparco), and a linear operator toolbox (SPOT).
    Eldad   HaberEldad is a Professor of Mathematics and of Earth and Ocean Sciences. His main field of interest is the development of computational methods for inverse problems with applications to geophysical and medical imaging. The field is interdisciplinary by nature and includes numerical discretisation of partial differential equations, numerical optimisation and robust statistics. Eldad is an NSERC Industrial Research Chair in Computational Geoscience.
    Özgür YilmazÖzgür is a Professor in the Department of Mathematics. His main research areas are quantisation of redundant expansions, blind source separation, and sparse approximations. He is a co-author of Sparco, a toolbox for testing sparse reconstruction toolbox algorithms.
    Alla    ShefferAlla is a Professor of Computer Science and a member of the Imager lab. She conducts research in digital shape modeling and geometry processing, with applications to computer graphics and computer-aided engineering. Her work utilises tools from computational and differential geometry, discrete mathematics, and graph theory to generate, manipulate, and edit discrete geometric models.

    Recommended Courses

    Students interested in Image and Data Processing research in the UKAAM are advised to take the following preliminary, specific, and optional courses:

    Preliminary and Foundational Courses

    CPSC 302: Numerical Computation for Algebraic Problems
    CPSC 303: Numerical Approximation and Discretization
    CPSC 314: Computer Graphics
    MATH 340: Introduction to Linear Programming
    MATH 405: Numerical Methods for Differential Equations
    CPSC 542G: Introduction to Numerical Methods

    Specific Courses

    EOSC 513: Imaging and Estimation with Wavelets
    CPSC 524: Computer Graphics: Modeling
    CPSC 526: Computer Animation
    CPSC 530P: Sensorimotor Computation
    MATH 555: Compressed Sensing

    Further Options

    CPSC 533D: Animation Physics
    EOSC 550: Linear Inverse Theory
    EOSC 555: Nonlinear Inverse Theory
    CPSC 564: Data Mining

  • Optimisation & Control
  •  The quest for minimum cost, maximum efficiency, or optimal performance measured by some other criterion is everywhere. It’s human nature, of course, but also the driving imperative of Nature in general – to the point where researchers trying to understand the world can approach their work by asking: “What is Nature trying to optimise?”

    For dynamical systems originating in fields as diverse as molecular physics, mechanical engineering, or the economy, the problem of designing active interventions to shape the time-varying state of the system belongs to the field of control theory. Building something that works at all is an achievement; designing inputs that are provably best possible is even more challenging. But now Nature’s question becomes ours: what are we trying to optimise? Different scalar-valued criteria can be attached to different aspects of system behaviour, measurement, and performance, leading to specialist fields of interest to this Group’s Core Faculty.

    Core Faculty

    The Optimisation and Control Group is composed of a few core UKAAM faculty who are actively involved in the UKAAM activities and supervise UKAAM students or postdoctoral fellows. Prospective students interested in a research project in Optimisation and Control in the UKAAM are encouraged to contact one or more of the core faculty as potential supervisors and let them know of their interests.

    Uri AscherUri is a Professor of Computer Science and a former Director of the UKAAM (1993-98). The focus of his work is the investigation and promotion of novel, efficient and reliable methods in scientific computation, particularly for approximation problems involving differential equations with constraints. He has contributed to a wide variety of applications and has also written several textbooks on numerical analysis published by SIAM.
    Yankai CaoYankai’s research focuses on the design and implementation of large-scale local and global optimization algorithms to solve problems that arise in diverse decision-making paradigms such as machine learning, stochastic optimization, optimal control, and complex networks. His algorithms combine mathematical techniques and emerging high-performance computing hardware (e.g., multi-core CPUs, GPUs, and computing clusters) to achieve computational scalability. His goal is also to make these developments accessible to academic and industrial users by implementing algorithms on easy-to-use and extensible software libraries.
    Michael FriedlanderMichael’s research is primarily in developing numerical methods for large-scale optimisation. He is especially interested in issues of convergence analysis, robust software implementation, and applications in signal and imagine processing, and machine learning.
    Bhushan GopaluniProf. Bhushan Gopaluni has been with the department of chemical and biological engineering since 2006. His primary research interests are in time series modeling and control.
    Eldad HaberEldad is a Professor of Mathematics and of Earth and Ocean Sciences. His main field of interest is the development of computational methods for inverse problems with applications to geophysical and medical imaging. The field is interdisciplinary by nature and includes numerical discretisation of partial differential equations, numerical optimisation and robust statistics. Eldad is an NSERC Industrial Research Chair in Computational Geoscience.
    Philip LoewenPhilip is a theoretician with a soft spot for numerics. He works in the calculus of variations, optimal control theory and nonsmooth analysis, and takes also an active interest in engineering applications.
    Ian MitchellIan is interested in numerical methods and software for solving ordinary and partial differential equations in the areas of control, robotics and verification. For example, the Toolbox of Level Set Methods is a Matlab software package which can be used for dynamic implicit surfaces in graphics, animation and fluid simulations as well as the Hamilton-Jacobi equation in control and verification.
    Anthony PeirceAnthony’s principal areas of research expertise are in the application of asymptotic and numerical analysis to industrial problems. Research topics have included optimal control of molecular motion, stability of reactive fronts propagating in layered porous media, analysis of the regularisation effect of microstructure on localisation phenomena in elasto-plastic models, and development of multipole expansion techniques for boundary integral models of large-scale fracture interactions. His most recent research efforts are focussing on the analysis of hydraulic fracture propagation, which is of considerable importance in the oil, gas, and mining industries. Anthony was an interim UKAAM Director from 1999 to 2000.

    Optimal path planning in robotics: original obstacles (top), adaptive mesh (centre), adaptive mesh paths (bottom)

    Recommended Courses

    Students interested in Optimisation and Control research in the UKAAM are advised to take the following preliminary, specific and optional courses:

    Preliminary and Foundational Courses

    CPSC 302: Numerical Computation for Algebraic Problems
    CPSC 303: Numerical Approximation and Discretization
    MATH 340: Introduction to Linear Programming
    MATH 401: Green’s Functions and Variational Methods
    MATH 402: Calculus of Variations
    MATH 403: Optimal Stabilization and Control of Dynamical Systems
    MATH 405: Numerical Methods for Differential Equations
    MATH 441: Mathematical Modeling: Discrete Optimization Problems
    MATH 442: Optimization in Graphs and Networks

    Specific Courses

    CPSC 406: Computational Optimization
    CPSC 546: Numerical Optimization
    MATH 547: Optimal Control Theory

    Further Options

    MATH 523: Combinatorial Optimization
    EOSC 550: Linear Inverse Theory
    EOSC 555: Nonlinear Inverse Theory